intcescapee
intcescapee
About
- Username
- intcescapee
- Joined
- Visits
- 0
- Last Active
- Roles
- Member
Comments
-
Answer: ∂z/∂u = 1/v and ∂z/∂v = -u/v²
-
Answer: ∂z/∂u = 1/v and ∂z/∂v = -u/v²
-
As a discrete system with weekly adjustments: week units .... price . revenue 0 ...... 7550 ... $28 ... $211400.00 1 ...... 7022 ... $27 ... $189580.50 2 ...... 6530 ... $26 ... $169779.87 3 ...... 6073 ... $25 ... $151822.38 4 ...... 5648 ..…
-
As a discrete system with weekly adjustments: week units .... price . revenue 0 ...... 7550 ... $28 ... $211400.00 1 ...... 7022 ... $27 ... $189580.50 2 ...... 6530 ... $26 ... $169779.87 3 ...... 6073 ... $25 ... $151822.38 4 ...... 5648 ..…
-
1.01 is a decimal representation. Do you mean fraction? 1.01 = 1 + 1/100 = 100/100 + 1/100 = 101/100 Answer: 101/100
-
1.01 is a decimal representation. Do you mean fraction? 1.01 = 1 + 1/100 = 100/100 + 1/100 = 101/100 Answer: 101/100
-
2x + 2y - 3z = 19 x + 2y - z = 11 ==> x - 2z = 8 20x - 2y + 4z = 22 x + 2y - z = 11 ==> 21x + 3z = 33 x - 2z = 8 21x + 3z = 33 ==> 21 (8 + 2z) 3z = 33 ==> z = -3 x = 8 + 2z = 8 - 6 = 2 y = 10x + 2z - 11 = 20 - …
-
2x + 2y - 3z = 19 x + 2y - z = 11 ==> x - 2z = 8 20x - 2y + 4z = 22 x + 2y - z = 11 ==> 21x + 3z = 33 x - 2z = 8 21x + 3z = 33 ==> 21 (8 + 2z) 3z = 33 ==> z = -3 x = 8 + 2z = 8 - 6 = 2 y = 10x + 2z - 11 = 20 - …
-
A = ∫ ∫ √((2x)² + (2y)² + 1) dx dy .... is the surface area of the shell ... let x = r cos(θ) and y = r sin(θ) ... ∂(r,θ) / ∂(x,y) = r A = ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] V ≈ 1/100 ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] ... since the shell is t…
-
A = ∫ ∫ √((2x)² + (2y)² + 1) dx dy .... is the surface area of the shell ... let x = r cos(θ) and y = r sin(θ) ... ∂(r,θ) / ∂(x,y) = r A = ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] V ≈ 1/100 ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] ... since the shell is t…
-
The simple answer is that the tank volume is 40π ft³ and the cg moves 2 feet: 40π ft³ (2 ft) (62.4 lbs/ft³) = 4992π ft-lbs By integration: W = ∫ F dx = 62.4 (10) ∫ (2 + y) √(4 - y²) dy .... y = -2 to 2 = 62.4 (80π) = 4992π ft-lbs Answer:…
-
The simple answer is that the tank volume is 40π ft³ and the cg moves 2 feet: 40π ft³ (2 ft) (62.4 lbs/ft³) = 4992π ft-lbs By integration: W = ∫ F dx = 62.4 (10) ∫ (2 + y) √(4 - y²) dy .... y = -2 to 2 = 62.4 (80π) = 4992π ft-lbs Answer:…
-
The simple answer is that the tank volume is 40π ft³ and the cg moves 2 feet: 40π ft³ (2 ft) (62.4 lbs/ft³) = 4992π ft-lbs By integration: W = ∫ F dx = 62.4 (10) ∫ (2 + y) √(4 - y²) dy .... y = -2 to 2 = 62.4 (80π) = 4992π ft-lbs Answer:…
-
The simple answer is that the tank volume is 40π ft³ and the cg moves 2 feet: 40π ft³ (2 ft) (62.4 lbs/ft³) = 4992π ft-lbs By integration: W = ∫ F dx = 62.4 (10) ∫ (2 + y) √(4 - y²) dy .... y = -2 to 2 = 62.4 (80π) = 4992π ft-lbs Answer:…
-
A = ∫ ∫ √((2x)² + (2y)² + 1) dx dy .... is the surface area of the shell ... let x = r cos(θ) and y = r sin(θ) ... ∂(r,θ) / ∂(x,y) = r A = ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] V ≈ 1/100 ∫ ∫ r √(4r² + 1) dr dθ [0,1] [0,2π] ... since the shell is t…
-
As a discrete system with weekly adjustments: week units .... price . revenue 0 ...... 7550 ... $28 ... $211400.00 1 ...... 7022 ... $27 ... $189580.50 2 ...... 6530 ... $26 ... $169779.87 3 ...... 6073 ... $25 ... $151822.38 4 ...... 5648 ..…
-
Answer: ∂z/∂u = 1/v and ∂z/∂v = -u/v²