jeff-aaron
jeff-aaron
About
- Username
- jeff-aaron
- Joined
- Visits
- 0
- Last Active
- Roles
- Member
Comments
-
h'(t) = -32t + 45 Set that to zero: -32t + 45 = 0 32t = 45 t = 45/32 t = 1.40625 h(1.40625) = -16(1.40625)^2 + 45(1.40625) + 40 h(1.40625) = -16(1.9775390625) + 63.28125 + 40 h(1.40625) = -31.640625 + 63.28125 + 40 h(1.40625) = 71.640625 T…
-
h'(t) = -32t + 45 Set that to zero: -32t + 45 = 0 32t = 45 t = 45/32 t = 1.40625 h(1.40625) = -16(1.40625)^2 + 45(1.40625) + 40 h(1.40625) = -16(1.9775390625) + 63.28125 + 40 h(1.40625) = -31.640625 + 63.28125 + 40 h(1.40625) = 71.640625 T…
-
y = (4x/1) + x^3 = 4x + x^3 The point (1,2) is not on that curve. Or did you mean: y = (4x) / (1 + x^3) Let a = 4x, so a' = 4 Let b = 1 + x^3, so b' = 3x^2 So y = a/b, so we use the Quotient Rule: y' = (a'b - ab') / (b^2) y' = ((4)(1 + x^3) …
-
y = (4x/1) + x^3 = 4x + x^3 The point (1,2) is not on that curve. Or did you mean: y = (4x) / (1 + x^3) Let a = 4x, so a' = 4 Let b = 1 + x^3, so b' = 3x^2 So y = a/b, so we use the Quotient Rule: y' = (a'b - ab') / (b^2) y' = ((4)(1 + x^3) …
-
Yes
-
( 6- â6) (3â2 - 2â3) (4â2 + 3â3) / 6 = (18â2 - 12â3 - 3â12 + 2â18)(4â2 + 3â3) / 6 = (18â2 - 12â3 - 6â3 + 6â2)(4â2 + 3â3) / 6 = (24â2 - 18â3)(4â2 + 3â3) / 6 = (4â2 - 3â3)(4â2 + 3â3) = 32 + 12â6…
-
5/sqrt(3) = (5*sqrt(3)) / (sqrt(3) * sqrt(3)) = (5*sqrt(3)) / (sqrt(3*3)) = (5*sqrt(3)) / (sqrt(9)) = (5*sqrt(3)) / 3 (5/sqrt(3))^2 = (5^2) / ((sqrt(3))^2) = 25 / 3
-
5/sqrt(3) = (5*sqrt(3)) / (sqrt(3) * sqrt(3)) = (5*sqrt(3)) / (sqrt(3*3)) = (5*sqrt(3)) / (sqrt(9)) = (5*sqrt(3)) / 3 (5/sqrt(3))^2 = (5^2) / ((sqrt(3))^2) = 25 / 3
-
Keep dividing by prime numbers until you get a prime number. 612 / 2 = 306 306 / 2 = 153 153 / 3 = 51 51 / 3 = 17 Answer: 2 * 2 * 3 * 3 * 17
-
Keep dividing by prime numbers until you get a prime number. 612 / 2 = 306 306 / 2 = 153 153 / 3 = 51 51 / 3 = 17 Answer: 2 * 2 * 3 * 3 * 17
-
5/sqrt(3) = (5*sqrt(3)) / (sqrt(3) * sqrt(3)) = (5*sqrt(3)) / (sqrt(3*3)) = (5*sqrt(3)) / (sqrt(9)) = (5*sqrt(3)) / 3 (5/sqrt(3))^2 = (5^2) / ((sqrt(3))^2) = 25 / 3
-
5/sqrt(3) = (5*sqrt(3)) / (sqrt(3) * sqrt(3)) = (5*sqrt(3)) / (sqrt(3*3)) = (5*sqrt(3)) / (sqrt(9)) = (5*sqrt(3)) / 3 (5/sqrt(3))^2 = (5^2) / ((sqrt(3))^2) = 25 / 3
-
( 6- â6) (3â2 - 2â3) (4â2 + 3â3) / 6 = (18â2 - 12â3 - 3â12 + 2â18)(4â2 + 3â3) / 6 = (18â2 - 12â3 - 6â3 + 6â2)(4â2 + 3â3) / 6 = (24â2 - 18â3)(4â2 + 3â3) / 6 = (4â2 - 3â3)(4â2 + 3â3) = 32 + 12â6…
-
( 6- â6) (3â2 - 2â3) (4â2 + 3â3) / 6 = (18â2 - 12â3 - 3â12 + 2â18)(4â2 + 3â3) / 6 = (18â2 - 12â3 - 6â3 + 6â2)(4â2 + 3â3) / 6 = (24â2 - 18â3)(4â2 + 3â3) / 6 = (4â2 - 3â3)(4â2 + 3â3) = 32 + 12â6…
-
( 6- â6) (3â2 - 2â3) (4â2 + 3â3) / 6 = (18â2 - 12â3 - 3â12 + 2â18)(4â2 + 3â3) / 6 = (18â2 - 12â3 - 6â3 + 6â2)(4â2 + 3â3) / 6 = (24â2 - 18â3)(4â2 + 3â3) / 6 = (4â2 - 3â3)(4â2 + 3â3) = 32 + 12â6…
-
( 6- â6) (3â2 - 2â3) (4â2 + 3â3) / 6 = (18â2 - 12â3 - 3â12 + 2â18)(4â2 + 3â3) / 6 = (18â2 - 12â3 - 6â3 + 6â2)(4â2 + 3â3) / 6 = (24â2 - 18â3)(4â2 + 3â3) / 6 = (4â2 - 3â3)(4â2 + 3â3) = 32 + 12â6…
-
Yes
-
y = (4x/1) + x^3 = 4x + x^3 The point (1,2) is not on that curve. Or did you mean: y = (4x) / (1 + x^3) Let a = 4x, so a' = 4 Let b = 1 + x^3, so b' = 3x^2 So y = a/b, so we use the Quotient Rule: y' = (a'b - ab') / (b^2) y' = ((4)(1 + x^3) …