How do you find a parametric representation?
Consider the curve C given by the intersection of the surfaces y = x^2 - z^2 and x^2 + z^2 = 1
a) Find parametric representations of the curve C
b) If F=<zx^2,x^3,xz> find the integral of F.dr
c) Find the curl of this vector field. Integrate curlF.dS where S is the surface y=x^2-z^2 bounded by C
Comments
x^2+z^2=1 and y=y is a cylinder , so the curve is
x^2+z^2 =1 y= x^2 -z^2
At plane XZ ( Region) take cylindrical coordinates
x= RcosT
z=RsinT R=1 ( Radius of the circle at XZ plane)
y= R^2(cos^2 T - sin^2T) , ie , y= R^2 cos 2T
then
x =cosT
z=sinT
y= cos2T ( Parametric)
r= cos T i+ sinTj+ cos2T k ( Position )
dr = dr/dT dT = -sinT, cosT, -2sin2T ) dT
F= (sinTcos^2T, cos^3T , cosTsinT) ( cosTsinT= sin2T/2)
INT Fdot dr= INT ( -sin^2Tcos^2T+ cos^3TcosT - sin^2 2T) dT 0<T<2pi
................ too long .-