Please help. Thank you
u = arcsin(2x)
sin(u) = 2x
cos(u) = cos(arctan(2x)) = √(1 - 4x²)
let arcsin(2x) = A
sin A = 2x
cos A = SQRT(1 - sin^2(A))
= SQRT(1 - 4x^2)
=> cos [arcsin(2x)] = cos A = SQRT(1 - 4x^2)
This Site Might Help You.
RE:
How do you evaluate cos(arcsin(2x))?
cos(arcsin(t)) = sin(arccos(t)) = sqrt(1 - t^2)
t = 2x
sqrt(1 - 4x^2)
Comments
u = arcsin(2x)
sin(u) = 2x
cos(u) = cos(arctan(2x)) = √(1 - 4x²)
let arcsin(2x) = A
sin A = 2x
cos A = SQRT(1 - sin^2(A))
= SQRT(1 - 4x^2)
=> cos [arcsin(2x)] = cos A = SQRT(1 - 4x^2)
This Site Might Help You.
RE:
How do you evaluate cos(arcsin(2x))?
Please help. Thank you
cos(arcsin(t)) = sin(arccos(t)) = sqrt(1 - t^2)
t = 2x
sqrt(1 - 4x^2)