Complex number problem?

if |z-4|/|z-8|=1 then what is [Re(z)] ¿

Comments

  • Re(z) is the real part of the complex number z.

    |z-4|/|z-8|=1

    |z-4|=|z-8|

    let z = x + yi

    |x+ yi - 4| = |x+yi - 8|

    |(x-4) + yi| = |(x-8) + yi|

    according to the above equation, the modulus of the 2 complex numbers are equal

    √{(x-4)^2 + y^2} = √{(x-8)^2 + y^2}

    x^2 - 8x + 16 +y^2 = x^2 - 16x + 64 + y^2

    -8x +16 = -16x + 64

    8x = 48

    x = 6

    therefore

    z = 6 + yi

    the real part is 6

    so

    Re(z) = 6

  • z = x + yi => |z| = √(x^2 + y^2) = √((Re(z))^2 + (Im(z))^2)

    |z - 4|/|z - 8| = 1

    (x - 4)^2 + y^2= (x - 8)^2 + y^2

    x^2 - 8x + 16 = x^2 - 16x + 64

    8x = 48 => x = 6 = Re(z).

Sign In or Register to comment.