NEQUAÇÃO EXPONENCIAL?? 10 PONTOS?

NEQUAÇÃO EXPONENCIAL?? 10 PONTOS?

1. Calcule x em cada inequação exponencial:

a) 3^x+1 > 9

b) (1/2)^2x-4 > (1/2)^2

2. Calcule x em cada caso:

a) 3^x-1 = 27

b) 2^2x-1 = 1/8

Ajuda aí, galera, por favor, tô desesperado com essas questões!

Comments

  • Vamos lá.

    Tem-se:

    1ª questão: Calcule "x" em cada desigualdade:

    1.a)

    3˟⁺¹ > 9 --------- Veja que 9 = 3². Assim:

    3˟⁺¹ > 3²

    Agora veja aí em cima: como as bases são iguais, vamos comparar os expoentes. E como as bases são maiores do que "1", então, na comparação dos expoentes, o faremos com o MESMO sinal da desigualdade. Logo, fazemos:

    x + 1 > 2 --------- passando "1" para o 2º membro da desigualdades, ficamos com:

    x > 2 - 1

    x > 1 ---------- Esta é a resposta para a questão "1.a".

    1.b)

    (1/2)²˟⁻⁴ > (1/2)²

    Veja: como as bases são iguais, vamos comparar os expoentes. E, como as bases são menores do que "1", então, na comparação dos expoentes, o faremos com o sinal CONTRÁRIO ao da desigualdade. Assim:

    2x - 4 < 2 ------passando "-4" para o 2º membro da desigualdade, temos:

    2x < 2 + 4

    2x < 6

    x < 6/2

    x < 3 ----- Esta é a resposta para a questão "1.b".

    2ª questão: Calcule "x" em cada igualdade:

    2.a)

    3˟⁻¹ = 27 ----------- veja que 27 = 3³. Logo, ficamos:

    3˟⁻¹ = 3³ ------ como as bases são iguais, vamos igualar os expoentes. Assim:

    x - 1 = 3 ----- passando "-1" para o 2º membro, temos:

    x = 3 + 1

    x = 4 <----Esta é a resposta para a questão da questão "2.a".

    2.b)

    2²˟⁻¹ = 1/8 ------- veja que 1/8 = 1/2³ = (1/2)³ = 2⁻³ . Assim, ficamos:

    2²˟⁻¹ = 2⁻³ ---- como as bases são iguais, então igualamos os expoentes. Logo:

    2x - 1 = 3 ------- passando "-1" para o 2º membro, temos:

    2x = 3 + 1

    2x = 4

    x = 4/2

    x = 2 <---- Esta é a resposta para a questão "2.b".

    É isso aí.

    OK?

    Adjemir.

  • a)3^x+1 > 9----fatora 9 base 3

    3^x+1 >3^2-----cancela as bases

    x+1>2

    x>2-1

    x>1

    b)b) (1/2)^2x-4 > (1/2)^2----------bases estão iguais apenas cancele e resolva os expoentes

    2x-4>2

    2x>6

    x>6/2===>x>3

    2.a)fatora 27

    3^x-1 = 3^3----cancele a base

    x-1=3

    x=4

    b)2^2x-1 = 1/8

    1/8 e a inversa de 2^-3

    cancela as bases

    2x-1=-3

    2x=-2

    x-2/2 =1

Sign In or Register to comment.