Alguem pode me Ajudar Nessas Questao de Matematica Financeira ?

Qual o capital que , aplicado a taxa de juros simples de 1,5%, ao mês, Durante 1 ano e meio, produz um juro de R$4.050,00 ?

Tem como me Explicar como q eu Calculo isso ?

ou tem alguma planilha algo q possa me ajudar ??

Obrigada

Comments

  • C= capital inicial

    M= montante final

    j= juros

    t= tempo de aplicação

    M=C(1+j.t) ---> juros simples...

    t= 1,5 anos = 1 ano + 6meses = 12+6= 18 meses

    j=1,5 % a.m = 0,015

    4050= C(1+0,015.18)

    C=3189,00 ( capital inicial aplicado)

  • O regime de juros compostos é conhecido como “juro sobre juro”, pois o juro incide sempre no capital anterior contrário dos juros simples. As financeiras, bancos, optam pela aplicação dos juros compostos, pois há uma possibilidade maior de lucro.

    Imagine a seguinte aplicação: Vamos supor que aplicamos um capital qualquer em um banco. Esse capital irá render uma taxa qualquer, assim, de período em período renderá um montante.

    Iremos representar: C = capital; i = taxa; n = tempo; M = montante.

    Sabendo que o montante é o capital mais a taxa vezes o capital aplicado (M = C + i . C)

    Veja agora como ficaria essa aplicação de período em período:

    Ao término do 1º período:

    Iremos resgatar o primeiro montante M1 = C + i . C

    Ao término do 2º período:

    Como se trata de regime de juros compostos o capital aplicado nesse segundo período da aplicação será o montante do período anterior e não o capital inicial como é feito no regime de juros simples. Portanto, o segundo montante será: M2 = M1 + i . M1.

    Ao término do 3º período:

    Seguindo a mesma regra do segundo período teremos: M3 = M2 + i . M2.

    Com a aplicação nesses três períodos obtivemos três fórmulas:

    M1 = C + i . C M2 = M1 + i . M1 M3 = M2 + i . M2

    Colocando os termos em evidência teremos:

    M1 = C (1 + i) M2 = M1 (1 + i) M3 = M2 (1 + i)

    Substituindo o montante 1 no segundo montante os termos:

    M2 = C (1 + i) (1 + i)

    M2 = C (1 + i)²

    Substituindo o montante 2 no terceiro montante os termos:

    M3 = C (1 + i)² (1 + i)

    M3 = C (1 + i)³

    Se seguirmos essa seqüência veja as aplicações seguintes:

    Ao término do 4º período:

    M4 = C (1 + i)^4

    Ao término do n-ésimo período:

    Mn = C (1 + i)^n

    Mn=C+J (capital mais juros)

Sign In or Register to comment.