2sin^2A + 2sin^2B + 2sin^2C = 2sin^2A + 1 - cos2B + 1 - cos2C?

Prove That

2sin^2A + 2sin^2B + 2sin^2C = 2sin^2A + 1 - cos2B + 1 - cos2C

Comments

  • 2sin²A +2sin²B+2sin²C =2sin²A+1-cos2B+1-cos2C

    sin²B = (1/2)(1-cos2B) identity

    2sin²B = 1-cos2B

    sin²C =(1/2)(1-cos2C) identity

    2sin²C =1-cos2C

    2sin²A+2sin²B+2sin²C = 2sin²A+1-cos2B+1-cos2C

    hence approved! :)

Sign In or Register to comment.