Integral of e^(4x)cos(x-6)?

What's the integral of e^(4x)cos(x-6)?

Do we use integration by parts or what? It seems like it goes on forever.

Comments

  • By integration by parts, we have...

    ∫ e^(4x)cos(x - 6) dx

    u = e^(4x)

    du/dx = 4e^(4x)

    dv = cos(x - 6) dx

    v = sin(x - 6)

    You get...

    ∫ e^(4x)cos(x - 6) dx = e^(4x)sin(x - 6) - 4 ∫ e^(4x)sin(x - 6) dx

    Repeat the same steps...

    u = e^(4x)

    du = 4e^(4x)

    dv = sin(x - 6) dx

    v = -cos(x - 6)

    You get...

    ∫ e^(4x)cos(x - 6) dx = e^(4x)sin(x - 6) - 4(-e^(4x)cos(x - 6) + ∫ 4e^(4x)cos(x - 6) dx)

    ∫ e^(4x)cos(x - 6) dx = e^(4x)sin(x - 6) + 4e^(4x)cos(x - 6) - 16 ∫ e^(4x)cos(x - 6) dx

    Bring -16 ∫ e^(4x)cos(x - 6) dx to the left to get...

    17 ∫ e^(4x)cos(x - 6) dx = e^(4x)sin(x - 6) + 4e^(4x)cos(x - 6)

    Divide both sides by 17 and include the constant to get...

    ∫ e^(4x)cos(x - 6) dx = (e^(4x)sin(x - 6) + 4e^(4x)cos(x - 6))/17 + c

    I hope this helps!

  • Integrate by parts:

    int(e^(4x) * cos(x - 6) * dx) = ?

    u = e^(4x)

    du = 4 * e^(4x) * dx

    dv = cos(x - 6) * dx

    v = sin(x - 6)

    int(e^(4x) * cos(x - 6) * dx) = uv - int(v * du)

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) - int(4 * e^(4x) * sin(x - 6) * dx)

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) - 4 * int(e^(4x) * sin(x - 6) * dx)

    u = e^(4x)

    du = 4 * e^(4x) * dx

    dv = sin(x - 6) * dx

    v = -cos(x - 6)

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) - 4 * (uv - int(v * du))

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) - 4 * uv + 4 * int(v * du)

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) - 4 * e^(4x) * (-cos(x - 6)) + 4 * int(4 * e^(4x) * (-cos(x - 6)) * dx)

    int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) + 4 * e^(4x) * cos(x - 6) - 16 * int(e^(4x) * cos(x - 6) * dx)

    int(e^(4x) * cos(x - 6) * dx) + 16 * int(e^(4x) * cos(x - 6) * dx) = e^(4x) * sin(x - 6) + 4 * e^(4x) * cos(x - 6)

    17 * int(e^(4x) * cos(x - 6) * dx) = e^(4x) * (sin(x - 6) + 4 * cos(x - 6))

    int(e^(4x) * cos(x - 6) * dx) = (1/17) * e^(4x) * (sin(x - 6) + 4 * cos(x - 6))

    Add the constant of integration:

    int(e^(4x) * cos(x - 6) * dx) = (1/17) * e^(4x) * (sin(x - 6) + 4 * cos(x - 6)) + C

    There you go.

  • e^(4 x) cos(6-x)

Sign In or Register to comment.