Divide
(18xu^(2)-20x^(4)u^(3)/(-3x^(4)u^(3))
Please answer and explain. thanks for the help.
= (18xu^2)/(-3x^(4)u^(3)) - 20x^(4)u^(3)/(-3x^(4)u^(3)) [following the rule - (a+b)/c = a/c + b/c]
= (18/-3)*(x/x^4)*(u^2/u^3) - (20/-3)*(x^4/x^4)*(u^3/u^3) [following the rule abc/def = a/d*b/e*c/f]
= -6*(1/x^3)*(1/u) + (20/3)*1*1
= -6/x^3u + 20/3 (Ans)
(18xu^2 - 20x^4u^3) / -3x^4u^3
2xu^2(9 - 10x^3u) / -3x^4u^3
2(9 - 10x^3u) / -3x^3u
(18 - 20x^3u) / -3x^3u
Comments
(18xu^(2)-20x^(4)u^(3)/(-3x^(4)u^(3))
= (18xu^2)/(-3x^(4)u^(3)) - 20x^(4)u^(3)/(-3x^(4)u^(3)) [following the rule - (a+b)/c = a/c + b/c]
= (18/-3)*(x/x^4)*(u^2/u^3) - (20/-3)*(x^4/x^4)*(u^3/u^3) [following the rule abc/def = a/d*b/e*c/f]
= -6*(1/x^3)*(1/u) + (20/3)*1*1
= -6/x^3u + 20/3 (Ans)
(18xu^2 - 20x^4u^3) / -3x^4u^3
2xu^2(9 - 10x^3u) / -3x^4u^3
2(9 - 10x^3u) / -3x^3u
(18 - 20x^3u) / -3x^3u