A toda matriz quadrada A = (aij)mxn de elementos reais de ordem n está associado um único número real chamado determinante da matriz A.
Representação
O determinante da matriz A pode ser representado por:
Regras Práticas
Para o cálculo de determinantes de ordem n (n 3), procede-se da seguinte forma:
Determinante de ordem 1
Para a matriz A = [a11] o determinante é o próprio elemento a11. Det A = a11
Determinante de ordem 2
Para a matriz
Para a matriz o determinante é igual à diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.
Det
-a12 . a21 ................+a11 . a22
det A = a11a22 - a12a21
Determinante de ordem 3
Para a matriz de 3ª ordem
define-se:
det A = a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a11a23a32 - a12a21a33
Regra de Sarrus
Para calcular o determinante de uma matriz de ordem 3:
Repetem-se, à direita da matriz, as duas primeiras colunas. Acompanhando as flechas em diagonal, multiplicam-se os elementos entre si, associando-lhes o sinal indicado.
Somam-se algebricamente os produtos obtidos, calculando-se, assim, o valor do determinante.
Um determinante é uma estrutura puramente algébrica associada a uma matriz. Somente existe determinante para matrizes quadradas. Cada matriz tem um, e somente um determinante.
EX: Dada uma matriz, vamos calcular
[raiz de 2 +1 e raiz de 3]
[raiz de 3 e raiz de 2 -1]
det M= (raiz de 2 +1) (raiz de2 -1) -raiz de3 * raiz de3= (2-1) -3, logo,
determinante é uma função que associa a cada matriz quadrada um escalar. Esta função permite saber se a matriz tem ou não inversa, pois as que não têm são precisamente aquelas cujo determinante é igual a 0.
Comments
A toda matriz quadrada A = (aij)mxn de elementos reais de ordem n está associado um único número real chamado determinante da matriz A.
Representação
O determinante da matriz A pode ser representado por:
Regras Práticas
Para o cálculo de determinantes de ordem n (n 3), procede-se da seguinte forma:
Determinante de ordem 1
Para a matriz A = [a11] o determinante é o próprio elemento a11. Det A = a11
Determinante de ordem 2
Para a matriz
Para a matriz o determinante é igual à diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.
Det
-a12 . a21 ................+a11 . a22
det A = a11a22 - a12a21
Determinante de ordem 3
Para a matriz de 3ª ordem
define-se:
det A = a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a11a23a32 - a12a21a33
Regra de Sarrus
Para calcular o determinante de uma matriz de ordem 3:
Repetem-se, à direita da matriz, as duas primeiras colunas. Acompanhando as flechas em diagonal, multiplicam-se os elementos entre si, associando-lhes o sinal indicado.
Somam-se algebricamente os produtos obtidos, calculando-se, assim, o valor do determinante.
Um determinante é uma estrutura puramente algébrica associada a uma matriz. Somente existe determinante para matrizes quadradas. Cada matriz tem um, e somente um determinante.
EX: Dada uma matriz, vamos calcular
[raiz de 2 +1 e raiz de 3]
[raiz de 3 e raiz de 2 -1]
det M= (raiz de 2 +1) (raiz de2 -1) -raiz de3 * raiz de3= (2-1) -3, logo,
determinate M= -2
determinante é uma função que associa a cada matriz quadrada um escalar. Esta função permite saber se a matriz tem ou não inversa, pois as que não têm são precisamente aquelas cujo determinante é igual a 0.