Math Problem. 8th grade level help?
Write an equation in standard form of the line that passes through (2,1) and is parrallel to 2x+3y=6...Okay so I know the slope will be 2 but can you explain how to do this problem
Thanks!
Write an equation in standard form of the line that passes through (2,1) and is parrallel to 2x+3y=6...Okay so I know the slope will be 2 but can you explain how to do this problem
Thanks!
Comments
How I was taught was this...
2x+3y=6 *First subtract the 6 by 2x to eliminate 2x.
3y=6-2x *Then divide 6 by 3 to eliminate the 3.
y=2-2x *Your answer should be Y=2-2x.
2x + 3y = 6 (2,1)
first solve for the slope...the slope is the number in front of x when y is isolated
2x + 3y = 6 move the 2x over (remember to change the sign)
3y = -2x + 6 divide everything by 3 to isolate y
y= -2/3x + 2 the slope of this equation is -2/3
now write your equation using the given point and a slope of -2/3
1 = -2/3(2) + 2 this is what I got
sorry, I forgot to put it into standard form
2/3(2) + 1 = 2
2x+3y=6
3y=-2x+6
y= -2/3x +2 m= -2/3
well now you have the points and the slope and you can get going.
y = - 2/3x +b now we got to plug in the points to find b, the y-intercept
1= -2/3(2)+b
1= -4/3 +b
b= 7/3
[y= -2/3 x + 7/3] (3)
2x+ 3y= 7
so the equation parallel to 2x+3y=6 is 2x+ 3y= 7
you're leaving a lot out here but I think I may have the answer. assuming the (4,6) point is an endpoint of a line and that endpoint also is a point on the circle, then you should be able to find the other end of the line where it intersects the circle. Notice that you can go over 2 to the right and up 3 to get to the given intersection (draw this out). if you go 2 left and down 3 from the circle's center, you should be able to find the other endpoint of the line. This would be (0,0) the origin.
y = mx + c
The slope is 2 so,
y = 2x + c
If it passes through (2, 1):
1 = 2(2) + c
c = 1 -4 = -3
So the equation would be
y = 2x -3
In standard form:
2x - y = 3
theres a formula and i believe it is (y-y1)=m(x-x1) so i'd be y-1=2(x-2) and slove from there