- Incompletas: Se um dos coeficientes ( b ou c ) for nulo, temos uma equação do 2º grau incompleta.
1º caso: b=0
Considere a equação do 2º grau imcompleta:
x²-9=0 » x²=9 » x= » x=
2º caso: c=0
Considere a equação do 2º grau imcompleta:
x²-9x=0 » Basta fatorar o fator comum x
x(x-9)=0 » x=0,9
3º caso: b=c=0
2x²=0 » x=0
Resolução de equações do 2º grau:
A resolução de equações do 2º grau incompletas já foi explicada acima, vamos agora resolver equações do 2º grau completas, ou seja, do tipo ax²+bx+c=0 com a, b e c diferentes de zero.
Comments
ax² + bx + c = 0
o numero que acompanha o x² é o 'a', o sinal que o acompanha também pertence ao numero.
o numero que acompanha o x sozinho é o 'b', o sinal que vem junto também pertence ao numero.
o numero que vem sozinho, se vier, é o 'c'
veja a formula no link : http://sandroatini.sites.uol.com.br/bhaska5.gif
só substituir na fórmula.
antes da raiz vem um + - nesse caso é para vc usar um de cada vez para achar o x' e o x''.
*QUANTO AOS SINAIS*
* em multiplicações (x) e divisões (/)
+ - = -
- + = -
- - = +
+ + = +
* em adições(+) e subtrações(-)
>>quando o sinal é igual mantém o sinal e soma os números
-1-1= -2
1+1=2
>>quando o sinal for diferente mantém o sinal do maior e subtrai os numeros
-1 + 3 = 2
4 - 2 = 2
9 - 11= -2
espero ter ajudado!!!
http://culturaeincurtura.blogspot.com/
Vou tentar ajuda-lo:
Equação do 2º grau
Denomina-se equação do segundo grau, toda a equação do tipo ax²+bx+c, com coeficientes numéricos a.b e c com .
Exemplos:
Equação
a
b
c
x²+2x+1
1
2
1
5x-2x²-1
-2
5
-1
Classificação:
- Incompletas: Se um dos coeficientes ( b ou c ) for nulo, temos uma equação do 2º grau incompleta.
1º caso: b=0
Considere a equação do 2º grau imcompleta:
x²-9=0 » x²=9 » x= » x=
2º caso: c=0
Considere a equação do 2º grau imcompleta:
x²-9x=0 » Basta fatorar o fator comum x
x(x-9)=0 » x=0,9
3º caso: b=c=0
2x²=0 » x=0
Resolução de equações do 2º grau:
A resolução de equações do 2º grau incompletas já foi explicada acima, vamos agora resolver equações do 2º grau completas, ou seja, do tipo ax²+bx+c=0 com a, b e c diferentes de zero.
- Uma equação do 2º grau pode ter até 2 raÃzes reais, que podem ser determinadas pela fórmula de Bháskara.
Como Bháskara chegou até a fórmula de resolução de equações do 2º grau?
Considerando a equação: ax²+bx+c=0, vamos determinar a fórmula de Bháskara:
Multiplicamos os dois membros por 4a:
4a²x²+4abx+4ac=0
4a²x²+4abx=-4ac
Somamos b² aos dois membros:
4a²x²+4abx+b²=b²-4ac
Fatoramos o lado esquedo e chamamos de (delta)
b²-4ac:
(2ax+b)²=
2ax+b=
2ax=-b
Logo:
ou
Fórmula de Bháskara:
Utilizando a fórmula de Bháskara, vamos resolver alguns exercÃcios:
1) 3x²-7x+2=0
a=3, b=-7 e c=2
= (-7)²-4.3.2 = 49-24 = 25
Substituindo na fórmula:
=
e
Logo, o conjunto verdade ou solução da equação é:
2) -x²+4x-4=0
a=-1, b=4 e c=-4
= 4²-4.-1.-4 = 16-16 = 0
Sustituindo na fórmual de Bháskara:
» x=2
- Neste caso, tivemos uma equação do 2º grau com duas raÃzes reais e iguais. ( )
3) 5x²-6x+5=0
a=5 b=-6 c=5
= (-6)²-4.5.5 = 36-100 = -64
Note que <0 e não existe raiz quadrada de um número negativo. Assim, a equação não possui nenhuma raiz real.
Logo: » vazio
Propriedades:
Duas raÃzes reais e diferentes
Duas raÃzes reais e iguais
Nenhuma raiz real
Relações entre coeficientes e raÃzes
Vamos provar as relações descritas acima:
Dado a equação ax²+bx+c=0, com e , suas raÃzes são:
e
A soma das raÃzes será:
Logo, a soma das raÃzes de uma equação do 2º grau é dada por:
O produto das raÃzes será:
Logo, o produto das raÃzes de uma equação do 2º grau é dada por:
Podemos através da equação ax²+bx+c=0, dividir por a.
Obtendo:
Substituindo por e :
Obtendo a Soma e Produto de uma equação do 2º grau:
x² - Sx + P = 0
Exemplos:
1) Determine a soma e o produto das seguintes equações:
a) x² - 4x + 3=0
[Sol] Sendo a=1, b=-4 e c=3:
b) 2x² - 6x -8 =0
Sendo a=2, b=-6 e c=-8
c) 4-x² = 0
Sendo a=-1, b=0 e c=4:
Resolução de equações fracionárias do 2º grau:
Equações fracionárias são as que possuem incógnitas no denominador e o processo de resolução destas equações é o mesmo das equações não fracionárias.
Exemplos resolvidos:
a) Onde , pois senão anularia o denominador
[Sol] Encontrando o m.m.c dos denominadores: 2x
Então:
Eliminando os denominadores, pois eles são iguais:
»
Aplicando a fórmula de Bháskara:
Logo, x = 2 e x` = 4. » S={2,-4}
b ) e
[Sol] m.m.c dos denominadores: (x-1).(x+2)
Então:
Eliminando os denominadores:
» » »
* Note que a solução da equação deve ser diferente de 1 e 2 pois senão anularia o denominador, logo a solução da equação será somente:
x=-1 » S={-1}
Resolução de equações literais do 2º grau:
Equações literais são as que possuem uma ou mais letras além da incógnita.
Equação
a
b
c
x² - (m+n)x + p = 0
1
-(m+n)
p
Exemplo: Determine o valor da incógnita x.
1) x²-3ax+2a²=0
[Sol] Aplicando a fórmula de Bháskara:
a=1, b=-3a, c=2a²
, Logo:
x = 2a e x = a » S={a,2a}
Resolução de equações biquadradas
Equacão biquadrada como o próprio nome diz, são equações nas quais estão elevadas ao quadrado duas vezes, sua forma é:
onde
Exemplo resolvido:
1)
Fazendo x² = y , temos
Substituindo os valores na equação, temos:
y² - 5y + 4 = 0
Aplicando Bháskara:
Logo, y = 4 e y`= 1
Voltando a variável x:
Como y=x², temos:
x²=4 » e x²=1 »
Então a solução será » S={-2,-1,1,2}
ou simplesmente
Espero que você entendeu..
Boa Sorte
sinais iguas= +
sinais diferentes= -
isso vale para multiplicação e divisão...
e quando passa pro outro lado da igualdade troca o sinal
cadé o exercicio?
qual a equação?
manda a equação
+ com - =-
- com +=-
+ com + =+
- com -=+
poste a questao que a gente ajuda!!!!!!!!!!!!!!!!
tipo exemplo (5+ (-5) * 5) = 5-5*5
+ com - = -
+ com + = +
- com - = -
tem uma fórmula, a fórmula é a de bascar, postei no 4shared pra vc ver.
http://www.4shared.com/file/88333717/e041c250/PARA...
onde a= número que tem maior expoente b=número que tem menor expoente e c=número sem expoente.
Regras de sinal:
+ com + = +
- com - = +
+ com - = -
- com + = -
- com - = +
+ com + = +
+ com - = -
- com + = -
qual a equação, manda ai que te ajudo a resolver