how do you integrate ((e^x+cos[x])^2)?

(how do you integrate (e^x+cos[x])^2)?

Update:

i know the answer to be e^xCos[x] + (e^(2*x) + x + (2*e^x + Cos[x])*Sin[x])/2

I just figure out how to get to it?

distribute?

1.) integral (e^(2x)+2e^xcos[x]+cos^2[x]

2.).....?

Comments

  • By expanding:

    ∫ [e^x + cos(x)]^2 dx

    = ∫ [e^(2x) + 2e^x*cos(x) + cos^2(x)] dx

    = ∫ e^(2x) dx + 2 ∫ e^x*cos(x) dx + ∫ cos^2(x) dx.

    The first integral can be found by letting u = 2x ==> du = 2 dx to get:

    ∫ e^(2x) dx = (1/2)e^(2x) + C.

    The second integral needs two rounds of integration by parts. First, let:

    u = e^x ==> du = e^x dx

    dv = cos(x) dx ==> v = sin(x).

    Then:

    ∫ e^x*cos(x) dx = uv - ∫ v du

    = e^x*sin(x) - ∫ e^x*sin(x) dx.

    Next, integrate ∫ e^x*sin(x) dx by parts with:

    u = e^x ==> du = e^x dx

    dv = sin(x) dx ==> v = -cos(x) dx.

    So:

    ∫ e^x*cos(x) dx = e^x*sin(x) - ∫ e^x*sin(x) dx

    = e^x*sin(x) - (uv - ∫ v du)

    = e^x*sin(x) + e^x*cos(x) - ∫ e^x*cos(x) dx.

    This implies that:

    ∫ e^x*cos(x) dx = e^x*sin(x) + e^x*cos(x) - ∫ e^x*cos(x) dx.

    Adding ∫ e^x*cos(x) dx to both sides:

    2 ∫ e^x*cos(x) dx = e^x*sin(x) + e^x*cos(x).

    Dividing both sides by 2 and tacking on the integration constant:

    ∫ e^x*cos(x) dx = (1/2)e^x*sin(x) + (1/2)e^x*cos(x) + C.

    The third integral can by found by noting that:

    cos^2(x) = [1 + cos(2x)]/2.

    Hence:

    ∫ cos^2(x) dx

    = 1/2 ∫ [1 + cos(2x)] dx

    = (1/2)x + (1/4)sin(2x).

    Finally:

    ∫ [e^x + cos(x)]^2 dx

    = ∫ e^(2x) dx + 2 ∫ e^x*cos(x) dx + ∫ cos^2(x) dx

    = (1/2)e^(2x) + e^x*sin(x) + e^x*cos(x) + (1/2)x + (1/4)sin(2x) + C.

    I hope this helps!

  • First expand:

    (e^x + cos x)^2 = (e^x)^2 + 2*(e^x)*(cos x) + (cos x)^2

    = e^(2x) + 2e^x cos x + cos^2 x

    Note that cos(2x) = 2cos^2 x - 1 so that cos^2 x = (cos(2x) + 1) / 2

    So (e^x + cos x)^2 = e^(2x) + cos(2x)/2 +1/2 + 2e^x cos x

    The integral of e^(2x) is 1/2 * e^2x

    The inegral of cos(2x) / 2 = sin(2x) / 4

    The inegral of 1/2 is 1/2 x

    It is left to find ∫2e^x cosx dx or 2*∫e^x cosx dx

    Let's integrate it by parts. u = e^x, dv = cos x dx, so that du = e^x dx and v = sinx

    So 2 ∫e^x cosx dx = 2 ( e^x * sin x - ∫sin x* e^x dx ) (*)

    Now let's integrate ∫e^x sin x dx by parts

    Similarly we get: ∫e^x sin x dx = - e^x* cos x + ∫e^x cos x dx

    Plug this in (*):

    2 ∫e^x cosx dx = 2 ( e^x * sin x - (-e^x * cos x + ∫e^x cosx dx) )

    2 ∫e^x cosx dx = 2 e^x * sin x + 2 e^x * cos x - 2 ∫e^x cosx dx

    Take the "- 2 ∫e^x cosx dx" from the right hand side to the left one

    2 ∫e^x cosx dx + 2 ∫e^x cosx dx = 2 e^x * sin x + 2 e^x * cos x

    4 ∫e^x cosx dx = 2 e^x * sin x + 2 e^x * cos x

    2 ∫e^x cosx dx = (e^x * sin x + e^x * cos x)

    Combining all these results, the final answer will be

    1/2 * e^2x + sin(2x) / 4 + x/2 + (e^x * sin x + e^x * cos x)

  • Carefully. You have to expand the binomial and integrate each term.

    ((e^x+cos[x])^2) = e^(2x) + 2 e^x cos(x) + [cos(x)]^2.

    Integrating e^(2x) is straightforward.

    Integrating 2 e^x cos(x) requires two iterations of integration by parts, plus knowing what to do when you get the original integrand back.

    To integrate [cos(x)]^2, use the substitution [cos(x)]^2 = 1/2 * (1 + cos (2x)). Each of those terms is easy to integrate.

  • expanding binomially we get,

    e^2x + (cos[x])^2 + 2*e^x*(cos[x])

    term 1 : e^2x . integrating this : e^2x/2 + c1

    term 2: (cos[x])^2= (1+cos[2x])/2= 1/2 + cos[2x]/2 : integrating this: x/2+ sin[2x]/4 +c2

    term 3 : integral(2*e^x*cos[x])= T = we have to find

    integrate by parts twice : 2*{e^x * (sin[x]) - integral( e^x *sin[x])}

    = 2*{e^x * (sin[x]) - {e^x * (-cos[x])- integral(e^x * (-cos[x]))} }

    = 2*{e^x * (sin[x]) - {e^x * (-cos[x]) + T}}

    = 2*{e^x * (sin[x]) + e^x * (cos[x]) -T}

    T = {2*e^x * (sin[x])} + {2*e^x * (cos[x])} -2T

    thus, 3T = 2* e^x * (sin[x]+cos[x])

    => T = {2* e^x * (sin[x]+cos[x])}/3 +c3

    now add all the answers of term 1, term 2 and term 3 which equals,

    = (e^2x/2 + c1) + (x/2+ sin[2x]/4 +c2) + ({2* e^x * (sin[x]+cos[x])}/3 +c3)

    = e^2x/2 + x/2+ sin[2x]/4 + {2* e^x * (sin[x]+cos[x])}/3 + c1+c2+c3

    let c1+c2+c3=C

    thus answer is : e^2x/2 + x/2+ sin[2x]/4 + {2* e^x * (sin[x]+cos[x])}/3 + C

    pre-requisites: 1.basic integrals of e^x,sin[x],cos[x]; 2.Integration by parts.3 binomial theorm here degree is 2.

    Hope it hepled!

  • e^x Cos[x] + 1/2 (e^(2 x) + x + (2 e^x + Cos[x]) Sin[x])

  • ?(sinx + cosx)^2 dx = ?(sin^2x + 2sinx cosx + cos^2x) = sin^2x + sin(2x) + cos^2(x) sin^2x = a million - cos^2x = a million - cos^2x + sin(2x) + cos^2(x) = a million + sin(2x) ?(a million + sin(2x))dx ?1dx + ?sin(2x) dx x - (a million/2)cos(2x) + C

Sign In or Register to comment.