¿Convergencia o divergencia de series? Doy 5 estrellas!?
Como resuelvo esto: Suponga que la serie desde 0 a infinito CnX^2 converge cuando x=-4 y diverge cuando x=6, como es la divergencia o la convergencia de las siguientes series? a) Cn desde 0 a infinito. b) Cn8^2 desde 0 a infinito
Comments
Hola
Recordemos que en toda serie
existe el concepto de rado de convergencia,
donde
para todo
|x| < R
la serie converge
y para todo
|x| > R
la serie diverge,
y se debe analizar especialmente
|x| = R
entonces, si nos dicen que para x = -4 converge
y para x = +6 diverge,
nos dicen que R se encuentra entre 4 y 6
4 < R < 6
Por lo tanto
a)
Como |1| < 4 < R
para x = 1 la serie converge
Σ [n_de_1_a_inf] Cn (1)^n = Σ [n_de_1_a_inf] Cn CONVERGE
b)
Como |8| > 6 > R
para x = 8 la serie diverge
Σ [n_de_1_a_inf] Cn (8)^n DIVERGE
Saludos