Hipérbole- dois pontos fixos F1 e F2 de um plano, tais que a distancia entre estes pontos seja igual a 2c > 0, denomina-se hipérbole, à curva plana cujo módulo da diferença das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a < c.
Determine a excentricidade da hipérbole de equação 25x2 - 16y2 – 400 = 0.
SOLUÇÃO: Temos: 25x2 - 16y2 = 400. Observe que a equação da hipérbole não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:
Portanto, a2 = 16 e b2 = 25. Daí, vem: a = 4 e b = 5.
Como c2 = a2 + b2 , vem substituindo e efetuando que c = Ö 41
Portanto a excentricidade e será igual a : e = c/a = Ö 41 /4 = 1,60
Resposta: 1,60.
parabola- no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F (foco) pertencente ao eixo das abcissas (eixo dos x). PARÁBOLA, à curva plana formada pelos pontos P(x,y) do plano cartesiano.
Qual a equação da parábola de foco no ponto F(2,0) e vértice na origem?
Solução: Temos p/2 = 2 \ p = 4
Daí, por substituição direta, vem:
y2 = 2.4.x \ y2 = 8x ou y2 - 8x = 0.
Elipse-à curva plana cuja soma das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a > c.
Assim é que temos por definição:
PF1 + PF2 = 2 a
Determine a excentricidade da elipse de equação 16x2 + 25y2 – 400 = 0.
SOLUÇÃO: Temos: 16x2 + 25y2 = 400. Observe que a equação da elipse não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:
Portanto, a2 = 25 e b2 = 16. Daí, vem: a = 5 e b = 4.
Como a2 = b2 + c2 , vem substituindo e efetuando, que c = 3
Portanto a excentricidade e será igual a : e = c/a = 3/5 = 0,60
Comments
Hipérbole- dois pontos fixos F1 e F2 de um plano, tais que a distancia entre estes pontos seja igual a 2c > 0, denomina-se hipérbole, à curva plana cujo módulo da diferença das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a < c.
Determine a excentricidade da hipérbole de equação 25x2 - 16y2 – 400 = 0.
SOLUÇÃO: Temos: 25x2 - 16y2 = 400. Observe que a equação da hipérbole não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:
Portanto, a2 = 16 e b2 = 25. Daí, vem: a = 4 e b = 5.
Como c2 = a2 + b2 , vem substituindo e efetuando que c = Ö 41
Portanto a excentricidade e será igual a : e = c/a = Ö 41 /4 = 1,60
Resposta: 1,60.
parabola- no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F (foco) pertencente ao eixo das abcissas (eixo dos x). PARÁBOLA, à curva plana formada pelos pontos P(x,y) do plano cartesiano.
Qual a equação da parábola de foco no ponto F(2,0) e vértice na origem?
Solução: Temos p/2 = 2 \ p = 4
Daí, por substituição direta, vem:
y2 = 2.4.x \ y2 = 8x ou y2 - 8x = 0.
Elipse-à curva plana cuja soma das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a > c.
Assim é que temos por definição:
PF1 + PF2 = 2 a
Determine a excentricidade da elipse de equação 16x2 + 25y2 – 400 = 0.
SOLUÇÃO: Temos: 16x2 + 25y2 = 400. Observe que a equação da elipse não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:
Portanto, a2 = 25 e b2 = 16. Daí, vem: a = 5 e b = 4.
Como a2 = b2 + c2 , vem substituindo e efetuando, que c = 3
Portanto a excentricidade e será igual a : e = c/a = 3/5 = 0,60
Resposta: 3/5 ou 0,60.
Parábolas são histórias, contos.