elgamal cryptosystem?

encrypt the message P=111 and k=3 using the ElGamal cryptosystem with the public key (p,r,b)=(2551,6,33). Show how the resulting ciphertext can be decrypted using the private key a=13.

Comments

  • Encryption:

    Compute r^k mod p

    = 6^3 = 216 mod 2551

    and Pb^k mod p

    = 111 * 33^3 = 1794 mod 2551

    So, the cyphertext is the pair (216, 1794).

    Decryption:

    1794 / (216^13) mod 2551

    = 1794 / 223 mod 2551

    By Euclid's Algorithm,

    2551 = 11* 223 + 98 ==> 2551 - 11* 223 = 98

    223 = 2 * 98 + 27 ==> 223 - 2 * 98 = 27

    98 = 3 * 27 + 17 ==> 98 - 3 * 27 = 17

    27 = 1 * 17 + 10 ==> 27 -17 = 10

    17 = 1 * 10 + 7 ==> 17 -10 = 7

    10 = 1 * 7 + 3 ==> 10 - 7 = 3

    7 = 2 * 3 + 1.

    Back-substituting yields

    66 * 2551 - 755* 223 = 1.

    So, 1/223 = -755 = 1796 mod 2551

    Finally,

    1794 / 223 mod 2551

    = 1794 * 1796 mod 2551

    = 111 mod 2551, which is the original message.

Sign In or Register to comment.