How do ∫1/[(2+cosx)*sinx] dx?

how to do

Update:

notice,My brackets

Comments

  • ∫ 1/((2 + cosx) sinx) dx

    Let t = tan(x/2)

    dt = 1/2 sec²(x/2) dx

    2 cos²(x/2) dt = dx

    From tan(x/2) = t, you have

    sin(x/2) = t/√(1 + t²)

    cos(x/2) = 1/√(1 + t²)

    Squaring both sides, you have

    cos²(x/2) = 1/(1 + t²), so the equation containing dt and dx becomes

    2/(1 + t²) dt = dx

    cosx = cos(2 (x/2)) = cos²(x/2) - sin²(x/2)

    cosx = [1/√(1 + t²)]² - [t/√(1 + t²)]²

    cosx = (1 - t²)/(1 + t²)

    sinx = sin(2 (x/2)) = 2 sin(x/2) cos(x/2)

    sinx = 2 (t/√(1 + t²)) (1/√(1 + t²))

    sinx = 2t/(1 + t²)

    The integral then changes from

    ∫ 1/((2 + cosx) sinx) dx

    to

    ∫ 1/((2 + (1 - t²)/(1 + t²)) (2t/(1 + t²))) ∙ (2/(1 + t²) dt)

    ∫ [2/(1 + t²)] / [ (2 + (1 - t²)/(1 + t²)) ∙ 2t/(1 + t²) ] dt

    ∫ 1 / [ (2 + (1 - t²)/(1 + t²)) ∙ t ] dt

    ∫ 1 / [ (2 + 2t² + 1 - t²)/(1 + t²)) ∙ t ] dt

    ∫ 1 / [ (3 + t²)/(1 + t²)) ∙ t ] dt

    ∫ (1 + t²) / [ (3 + t²)t ] dt

    Break up the integrand into partial fractions:

    (1 + t²) / (t (3 + t²)) = A/t + (Bt + D)/(3 + t²)

    1 + t² = A(3 + t²) + (Bt + D)t

    1 + t² = 3A + At² + Bt² + Dt

    1 + t² = (A + B)t² + Dt + 3A

    Matching up the coefficients, you have

    A + B = 1

    D = 0

    3A = 1

    From the third equation, you have A = 1/3.

    In the first equation, you get B = 2/3.

    (1 + t²) / (t (3 + t²)) = (1/3)/t + (2/3)t/(3 + t²)

    1/3 ∫ 1/t dt + 2/3 ∫ t/(3 + t²) dt

    In the second integral, let u = 3 + t²

    du = 2t dt

    1/2 du = t dt

    1/3 ∫ 1/t dt + 2/3 (1/2) ∫ 1/u du

    1/3 ln|t| + 1/3 ln|u| + C

    1/3 ln|t| + 1/3 ln|3 + t²| + C

    1/3 ln|tan(x/2)| + 1/3 ln|3 + tan²(x/2)| + C

  • 2+cosx d/dx = -sinx

    let

    2+cosx =u

    du = -sinx dx

    then,

    remember ∫du/u = ln u

    yet, you need to multiply 1/(2+cosx) by -1/-1 to satisfy the fromula above

    ∫(-1/-1)[1/(2+cosx)](sinx) dx

    then extract the constant 1/-1

    1/-1 ∫1/(2+cosx) * -sinx dx

    -1∫du/u = -ln u

    where u is 2+cosx

    ∫1/[(2+cosx)*sinx] dx = -ln (2+cosx) +c

  • ∫1/[(2+cosx)*sinx] dx =

    ∫sin(x) /[(2+cos(x))sin^2(x)] dx =

    - ∫ 1/[(2+cos(x))(1-cos^2(x)] d(cos(x))

    cos(x) = u

    - ∫ 1/[(2 + u)(1-u^2)] du =

    A∫1/(2+u)du +B∫1/(1+u) du + C∫1/(1-u) du

    A(1-u^2) + B(1-u)(2+u) + C(2+u)(1+u) = - 1

    C = -1/6

    B = -1/2

    A = 1/3

    (1/3)∫1/(2+u)du - (1/2)∫1/(1+u) du -(1/6) ∫1/(1-u) du =

    (1/3)Ln|2+u| - (1/2)Ln|1+u| -(1/6)Ln|1-u| + C Back to x

    (1/3)Ln|2+cos(x)| - (1/2)Ln|1+cos(x)| -(1/6)Ln|1-cos(x)| + C

Sign In or Register to comment.