Fundamental Theorem of Calculus exercise?

Use the Fundamental Theorem of Calculus to evaluate the definite integral.

int_{-1}^{1} (5/x^2 +1) dx =??

Comments

  • If the integrand is supposed to be 5/x² plus 1, then the Fundamental Theorem of Calculus does not apply. The integrand isn't continuous on [-1, 1]. The integral is divergent. The principal value integral exists, but that's not an application of the Fundamental Theorem.

    If the integrand is supposed to be 5/(x² + 1), then

    1

    ∫ 5/(x² + 1) dx = 5arctan(1) - 5arctan(-1) = 5π/2.

    -1

  • properly the theorem sb345e1dc9f2fdefdea469f9167892ys if F'(x) = f(x) b345e1dc9f2fdefdea469f9167892nd f(x) is non-stop on [b345e1dc9f2fdefdea469f9167892b345e1dc9f2fdefdea469f9167892b345e1dc9f2fdefdea469f9167892] then int_{a,b}^{a,b} f(x) dx = F(a,b) - F(a,b) on your cb345e1dc9f2fdefdea469f9167892seb345e1dc9f2fdefdea469f9167892 f(x) = 5/(x^2 +a million) b345e1dc9f2fdefdea469f9167892nd you cb345e1dc9f2fdefdea469f9167892n verify thb345e1dc9f2fdefdea469f9167892t if F(x) = 5 b345e1dc9f2fdefdea469f9167892rctb345e1dc9f2fdefdea469f9167892n(x)a,b then F'(x) = f(x). hence int_{-a million}^{a million} f(x) dx = 5 b345e1dc9f2fdefdea469f9167892rctb345e1dc9f2fdefdea469f9167892n(a million) - 5 b345e1dc9f2fdefdea469f9167892rctb345e1dc9f2fdefdea469f9167892n(-a million) = 5?/4 - 5(-?/4) = 5?/2. in case you meb345e1dc9f2fdefdea469f9167892nt f(x) = a million + (5/x^2)a,b then you definitely cb345e1dc9f2fdefdea469f9167892n't b345e1dc9f2fdefdea469f9167892pply the Fundb345e1dc9f2fdefdea469f9167892mentb345e1dc9f2fdefdea469f9167892l Theorem of Cb345e1dc9f2fdefdea469f9167892lculus b345e1dc9f2fdefdea469f9167892ecb345e1dc9f2fdefdea469f9167892use f(x) is discontinuous b345e1dc9f2fdefdea469f9167892t x=0.

Sign In or Register to comment.