Partial Derivatives ............. help Please 10pts?

1.) Show that u(x,t) = sin(nx)e^(-n^(2)t) satisfies the heat equation for any constant n:

df/dt = d^2f/dx^2.

2.) Show that the functions is harmonic:

u(x,y) = tan^-1 y/x.

Comments

  • 1) ∂u/∂t = -n² sin(nx) e^(-n²t)

    ∂u/∂x = n cos(nx) e^(-n²t)

    ∂²u/∂x² = -n² sin(nx) e^(-n²t)

    Hence, ∂u/∂t = ∂²u/∂x².

    -----------------

    2) We need to show that u satisfies Laplace's Equation ∂²u/∂x² + ∂²u/∂y² = 0.

    ∂u/∂x = (1/(1 + (y/x)²) * (-y/x²) = -y/(x² + y²).

    ==> ∂²u/∂x² = 2xy/(x² + y²)²

    ∂u/∂y = (1/(1 + (y/x)²) * (1/x) = x/(x² + y²).

    ==> ∂²u/∂y² = -2xy/(x² + y²)².

    So, ∂²u/∂x² + ∂²u/∂y² = 0, as required.

    ==> u is harmonic.

    I hope this helps!

Sign In or Register to comment.