-Uma das suas maiores contribuições foi ao nível das notações.
notações cientícificas, ex:
2.10²³ , 3,56 . 10³³ ect
-A Euler também se atribui o uso definitivo da letra grega p como notação para a razão da circunferência e para o diâmetro do círculo. Não foi o primeiro matemático a utilizá-la, pois há registo de uma outra ocorrência em 1706, mas foi o primeiro a reconhecer a sua importância e utilidade.
-A introdução do símbolo i para Ö (-1) foi mais uma notação adoptada em 1777, quase no fim da sua vida. Mas, só ficou conhecida em 1794 quando publicada numa obra posterior à sua morte.
A Euler também é associada a introdução das seguintes notações:
- A sexta constante mais importante da Matemática, a Constante de Euler, g;
A contribuição de Euler para a ciência matemática teve como um de seus pilares a Introductio in analysim infinitorum (1748; Introdução à análise dos infinitos), obra que constitui um dos fundamentos da matemática moderna.
Leonhard Euler nasceu na cidade suíça de Basiléia em 15 de abril de 1707, numa família tradicionalmente dedicada à pesquisa científica. A precocidade e o brilhantismo de seus primeiros trabalhos despertaram o interesse dos principais matemáticos de sua época, como Jean Bernouilli e seus filhos, e converteram-no, aos vinte anos, em membro associado da Academia de Ciências de São Petersburgo, para onde se transferira. Por meio de livros e monografias que apresentou à Academia, Euler aperfeiçoou os conhecimentos da época sobre cálculo integral, desenvolveu a teoria das funções trigonométrica e logarítmica e simplificou as operações relacionadas à análise matemática. Sua contribuição para a geometria analítica e para a trigonometria é comparável à de Euclides para a geometria plana. A tendência a expressar operações físicas e matemáticas em termos aritméticos incorporou-se desde então aos procedimentos das ciências exatas.
Em conseqüência de um problema neurológico, Euler perdeu em 1735 a visão de um olho. Chamado em 1741 por Frederico II o Grande, da Prússia, foi honrado com a dignidade de membro da Academia de Berlim.
Ao perder o favor real, em 1766, transferiu-se de novo para a corte de São Petersburgo, a cujo trono havia subido Catarina II a Grande, e ali estendeu sua atividade ao estudo da mecânica, óptica, acústica e astrofísica. Estudou o movimento lunar, o fenômeno dos eclipses e as posições relativas dos astros.
As principais descobertas de Euler se deram no campo da teoria dos números. Ele também foi responsável pela incorporação de numerosos símbolos à linguagem matemática, como para designar somatório; e para denominar a base dos logaritmos naturais ou neperianos e a, b, e c para os lados de um triângulo e A, B e C para seus ângulos. Euler não esmoreceu em sua atividade nem mesmo quando ficou cego, aos sessenta anos. Morreu em 18 de setembro de 1783, em São Petersburgo.
O trabalho entre Euler e d’Alembert sempre convergiu no mesmo sentido. Os seus interesses eram quase os mesmos, apesar de ter havido alguma controvérsia entre eles sobre o problema das membranas vibrantes, em 1757, cuja solução da equação de Bessel, Euler conseguiu obter, o que ocasionou um afastamento. Mas, com a teoria dos números houve um grande apoio por parte de d’Alembert a Euler.
A contribuição de Euler para a teoria dos logaritmos não se restringiu à definição de expoentes, como usamos hoje. Trabalhou, também, no conceito de logaritmo de números negativos.
Enquanto se mantinha ocupado a pesquisar Matemática em Berlim, d’Alembert pesquisava em Paris.
Em 1747, Euler escreveu a este matemático explicando correctamente a questão dos logaritmos dos números negativos. Mas ao contrário do que seria de se esperar, a fórmula formulada por Euler, válida para qualquer ângulo (em radianos), não foi compreendida por Bernoulli nem por d’Alembert pois, para estes, os logaritmos de números negativos eram reais, o que não é verdade já que se tratam de números imaginários puros.
Através da sua identidade – mais tarde conhecida como Igualdade de Euler – é possível observar que os logaritmos de números complexos, reais ou imaginários, também são números complexos. Usando as identidades de Euler é também possível expressar quantidades como sen(1 + i) ou cos(i), na forma usual para números complexos. Desta maneira, vê-se que ao efectuar operações transcendentes elementares sobre os números complexos, os resultados são números complexos.
Assim sendo, Euler foi capaz de demonstrar que o sistema de números complexos é fechado sob as operações transcendentes elementares, enquanto d’Alembert sugerira que o sistema de números complexos era algebricamente fechado.
[editar] Euler e Fermat
Tanto Fermat como Euler sentiram-se bastante interessados pela teoria dos números. Embora não haja qualquer livro sobre este assunto, Euler escreveu cartas e artigos sobre vários aspectos desta teoria. Entre elas encontram-se as conjecturas apresentadas por Fermat, que foram derrubadas por Euler. Duas dessas conjecturas foram:
Os números da forma 22n + 1 são sempre primos;
Se p é primo e a um inteiro, então ap – a é divisível por p.
A primeira foi derrubada em 1732 com o auxílio do seu domínio em computação, evidenciando que 225 + 1 = 4294967297 é factorizável em 6700417 * 641. No entanto, no recurso a um contra exemplo para deitar por terra a segunda conjectura, Euler também errou, apesar do erro só ter sido descoberto em 1966, dois séculos depois e com o auxílio de um computador.
Euler também realizou a demonstração de uma conjectura bastante conhecida, denominada como Pequeno Teorema de Fermat. Tal demonstração foi apresentada numa publicação em 1736, denominada Commentarii.
Posteriormente, demonstrou uma afirmação mais geral do Pequeno Teorema de Fermat, que veio a chamar-se Função de Euler. Mas, contrariando o que seria esperado, Euler não foi capaz de demonstrar o Último Teorema de Fermat, embora provasse a impossibilidade de soluções inteiras de xn + yn = zn para n = 3.
Em 1747, definiu mais 27 números amigáveis, que se juntaram aos três já conhecidos por Fermat. Mais tarde aumentou o número para 60. Euler também provou que todos os números perfeitos pares são da forma dada por Euclides, 2n-1(2n – 1), onde 2n – 1 é primo. Se existe ou não um número ímpar perfeito foi uma questão levantada por Euler e Goldbach, através de correspondência, ainda hoje sem resposta.
[editar] Curiosidades
Antiga nota de 10 francos suiços homenageando Euler.Por ter sido um dos melhores e mais produtivos matemáticos da história, foi representado na sexta série das notas do banco Suíço e em numerosos selos da Suíça, Alemanha e da Rússia.
O asteróide 2002 foi chamado Euler em sua homenagem.
É também comemorado pela Igreja Luterana no dia 24 de Maio, no Calendário dos Santos.
Euler foi também uma das inspirações na criação do jogo Sudoku. Um puzzle inspirado (provavelmente) no quadrado latino, invenção do século XVIII de Euler.
Foi o criador da teoria dos Grafos, a partir da resolução do problema das Sete pontes de Königsberg
Leonard Euler morreu bebendo chá, em São Petesburgo
Comments
-Uma das suas maiores contribuições foi ao nível das notações.
notações cientícificas, ex:
2.10²³ , 3,56 . 10³³ ect
-A Euler também se atribui o uso definitivo da letra grega p como notação para a razão da circunferência e para o diâmetro do círculo. Não foi o primeiro matemático a utilizá-la, pois há registo de uma outra ocorrência em 1706, mas foi o primeiro a reconhecer a sua importância e utilidade.
-A introdução do símbolo i para Ö (-1) foi mais uma notação adoptada em 1777, quase no fim da sua vida. Mas, só ficou conhecida em 1794 quando publicada numa obra posterior à sua morte.
A Euler também é associada a introdução das seguintes notações:
- A sexta constante mais importante da Matemática, a Constante de Euler, g;
- O logaritmo de x, ln x;
- O uso da letra å para a adição;
- f(x) para uma função de x.
pode procurar aqui que nesse site tem tudo:
http://www.educ.fc.ul.pt/docentes/opombo/seminario...
bjão
Sua Assinatura:
A contribuição de Euler para a ciência matemática teve como um de seus pilares a Introductio in analysim infinitorum (1748; Introdução à análise dos infinitos), obra que constitui um dos fundamentos da matemática moderna.
Leonhard Euler nasceu na cidade suíça de Basiléia em 15 de abril de 1707, numa família tradicionalmente dedicada à pesquisa científica. A precocidade e o brilhantismo de seus primeiros trabalhos despertaram o interesse dos principais matemáticos de sua época, como Jean Bernouilli e seus filhos, e converteram-no, aos vinte anos, em membro associado da Academia de Ciências de São Petersburgo, para onde se transferira. Por meio de livros e monografias que apresentou à Academia, Euler aperfeiçoou os conhecimentos da época sobre cálculo integral, desenvolveu a teoria das funções trigonométrica e logarítmica e simplificou as operações relacionadas à análise matemática. Sua contribuição para a geometria analítica e para a trigonometria é comparável à de Euclides para a geometria plana. A tendência a expressar operações físicas e matemáticas em termos aritméticos incorporou-se desde então aos procedimentos das ciências exatas.
Em conseqüência de um problema neurológico, Euler perdeu em 1735 a visão de um olho. Chamado em 1741 por Frederico II o Grande, da Prússia, foi honrado com a dignidade de membro da Academia de Berlim.
Ao perder o favor real, em 1766, transferiu-se de novo para a corte de São Petersburgo, a cujo trono havia subido Catarina II a Grande, e ali estendeu sua atividade ao estudo da mecânica, óptica, acústica e astrofísica. Estudou o movimento lunar, o fenômeno dos eclipses e as posições relativas dos astros.
As principais descobertas de Euler se deram no campo da teoria dos números. Ele também foi responsável pela incorporação de numerosos símbolos à linguagem matemática, como para designar somatório; e para denominar a base dos logaritmos naturais ou neperianos e a, b, e c para os lados de um triângulo e A, B e C para seus ângulos. Euler não esmoreceu em sua atividade nem mesmo quando ficou cego, aos sessenta anos. Morreu em 18 de setembro de 1783, em São Petersburgo.
Euler e d'Alembert
O trabalho entre Euler e d’Alembert sempre convergiu no mesmo sentido. Os seus interesses eram quase os mesmos, apesar de ter havido alguma controvérsia entre eles sobre o problema das membranas vibrantes, em 1757, cuja solução da equação de Bessel, Euler conseguiu obter, o que ocasionou um afastamento. Mas, com a teoria dos números houve um grande apoio por parte de d’Alembert a Euler.
A contribuição de Euler para a teoria dos logaritmos não se restringiu à definição de expoentes, como usamos hoje. Trabalhou, também, no conceito de logaritmo de números negativos.
Enquanto se mantinha ocupado a pesquisar Matemática em Berlim, d’Alembert pesquisava em Paris.
Em 1747, Euler escreveu a este matemático explicando correctamente a questão dos logaritmos dos números negativos. Mas ao contrário do que seria de se esperar, a fórmula formulada por Euler, válida para qualquer ângulo (em radianos), não foi compreendida por Bernoulli nem por d’Alembert pois, para estes, os logaritmos de números negativos eram reais, o que não é verdade já que se tratam de números imaginários puros.
Através da sua identidade – mais tarde conhecida como Igualdade de Euler – é possível observar que os logaritmos de números complexos, reais ou imaginários, também são números complexos. Usando as identidades de Euler é também possível expressar quantidades como sen(1 + i) ou cos(i), na forma usual para números complexos. Desta maneira, vê-se que ao efectuar operações transcendentes elementares sobre os números complexos, os resultados são números complexos.
Assim sendo, Euler foi capaz de demonstrar que o sistema de números complexos é fechado sob as operações transcendentes elementares, enquanto d’Alembert sugerira que o sistema de números complexos era algebricamente fechado.
[editar] Euler e Fermat
Tanto Fermat como Euler sentiram-se bastante interessados pela teoria dos números. Embora não haja qualquer livro sobre este assunto, Euler escreveu cartas e artigos sobre vários aspectos desta teoria. Entre elas encontram-se as conjecturas apresentadas por Fermat, que foram derrubadas por Euler. Duas dessas conjecturas foram:
Os números da forma 22n + 1 são sempre primos;
Se p é primo e a um inteiro, então ap – a é divisível por p.
A primeira foi derrubada em 1732 com o auxílio do seu domínio em computação, evidenciando que 225 + 1 = 4294967297 é factorizável em 6700417 * 641. No entanto, no recurso a um contra exemplo para deitar por terra a segunda conjectura, Euler também errou, apesar do erro só ter sido descoberto em 1966, dois séculos depois e com o auxílio de um computador.
Euler também realizou a demonstração de uma conjectura bastante conhecida, denominada como Pequeno Teorema de Fermat. Tal demonstração foi apresentada numa publicação em 1736, denominada Commentarii.
Posteriormente, demonstrou uma afirmação mais geral do Pequeno Teorema de Fermat, que veio a chamar-se Função de Euler. Mas, contrariando o que seria esperado, Euler não foi capaz de demonstrar o Último Teorema de Fermat, embora provasse a impossibilidade de soluções inteiras de xn + yn = zn para n = 3.
Em 1747, definiu mais 27 números amigáveis, que se juntaram aos três já conhecidos por Fermat. Mais tarde aumentou o número para 60. Euler também provou que todos os números perfeitos pares são da forma dada por Euclides, 2n-1(2n – 1), onde 2n – 1 é primo. Se existe ou não um número ímpar perfeito foi uma questão levantada por Euler e Goldbach, através de correspondência, ainda hoje sem resposta.
[editar] Curiosidades
Antiga nota de 10 francos suiços homenageando Euler.Por ter sido um dos melhores e mais produtivos matemáticos da história, foi representado na sexta série das notas do banco Suíço e em numerosos selos da Suíça, Alemanha e da Rússia.
O asteróide 2002 foi chamado Euler em sua homenagem.
É também comemorado pela Igreja Luterana no dia 24 de Maio, no Calendário dos Santos.
Euler foi também uma das inspirações na criação do jogo Sudoku. Um puzzle inspirado (provavelmente) no quadrado latino, invenção do século XVIII de Euler.
Foi o criador da teoria dos Grafos, a partir da resolução do problema das Sete pontes de Königsberg
Leonard Euler morreu bebendo chá, em São Petesburgo
Valeu amigo, um bom trabalho