2. If c = f(a^2 - b^2, 4ab), find (d^2c/da^2) . Assume that the second order partial derivatives of f
are continuous.
help me please
Let u = a^2 - b^2 and v = 4ab.
By the Chain Rule,
∂c/∂a = ∂f/∂u ∂u/∂a + ∂f/∂v ∂v/∂a
.........= 2a ∂f/∂u + 4b ∂f/∂v.
∂²c/∂a² = (∂/∂a)(∂c/∂a)
...........= (∂/∂a)[2a ∂f/∂u + 4b ∂f/∂v]
...........= [2 * ∂f/∂u + 2a * (∂/∂a)(∂f/∂u)] + 4b (∂/∂a)(∂f/∂v)
...........= 2 ∂f/∂u + 2a [2a ∂²f/∂u² + 4b ∂²f/∂v∂u] + 4b [2a ∂²f/∂u∂v + 4b ∂²f/∂v²]
...........= 2 ∂f/∂u + 4a² ∂²f/∂u² + 16ab ∂²f/∂u∂v + 16b² ∂²f/∂v².
I hope this helps!
c = f(a²-b², 4ab)
let u(a,b) = a²-b²
let v(a,b) = 4ab
âu/âa = 2a
âv/âa = 4b
âc/âa = âf(u,v)/âa
âc/âa = âf(u,v)/âu * âu/âa + âf(u,v)/âv * âv/âa
âc/âa = âf(u,v)/âu * 2a + âf(u,v)/âv * 4b
â²c/âa² = â²f(u,v)/âuâa * 2a + â²f(u,v)/âvâa * 4b
â²c/âa² = [â²f(u,v)/â²u * âu/âa + â²f(u,v)/âuâv * âv/âa] * 2a + [â²f(u,v)/âvâu * âu/âa + â²f(u,v)/â²v * âv/âa] * 4b
â²c/âa² = [â²f(u,v)/â²u * 2a + â²f(u,v)/âuâv * 4b] * 2a + [â²f(u,v)/âvâu * 2a + â²f(u,v)/â²v * 4b] * 4b
â²c/âa² = â²f(u,v)/â²u * 4a² + â²f(u,v)/âuâv * 8ab + â²f(u,v)/âvâu * 8ab + â²f(u,v)/â²v * 16b²
â²c/âa² = â²f(u,v)/â²u * 4a² + â²f(u,v)/âuâv * 16ab + â²f(u,v)/â²v * 16b²
â²c/âa² = 4 * [â²f(u,v)/â²u * a² + â²f(u,v)/âuâv * 4ab + â²f(u,v)/â²v * 4b²]
â²c/âa² = 4 * [â/âu * a + â/âv * 2b]² f(u,v)
Comments
Let u = a^2 - b^2 and v = 4ab.
By the Chain Rule,
∂c/∂a = ∂f/∂u ∂u/∂a + ∂f/∂v ∂v/∂a
.........= 2a ∂f/∂u + 4b ∂f/∂v.
∂²c/∂a² = (∂/∂a)(∂c/∂a)
...........= (∂/∂a)[2a ∂f/∂u + 4b ∂f/∂v]
...........= [2 * ∂f/∂u + 2a * (∂/∂a)(∂f/∂u)] + 4b (∂/∂a)(∂f/∂v)
...........= 2 ∂f/∂u + 2a [2a ∂²f/∂u² + 4b ∂²f/∂v∂u] + 4b [2a ∂²f/∂u∂v + 4b ∂²f/∂v²]
...........= 2 ∂f/∂u + 4a² ∂²f/∂u² + 16ab ∂²f/∂u∂v + 16b² ∂²f/∂v².
I hope this helps!
c = f(a²-b², 4ab)
let u(a,b) = a²-b²
let v(a,b) = 4ab
âu/âa = 2a
âv/âa = 4b
âc/âa = âf(u,v)/âa
âc/âa = âf(u,v)/âu * âu/âa + âf(u,v)/âv * âv/âa
âc/âa = âf(u,v)/âu * 2a + âf(u,v)/âv * 4b
â²c/âa² = â²f(u,v)/âuâa * 2a + â²f(u,v)/âvâa * 4b
â²c/âa² = [â²f(u,v)/â²u * âu/âa + â²f(u,v)/âuâv * âv/âa] * 2a + [â²f(u,v)/âvâu * âu/âa + â²f(u,v)/â²v * âv/âa] * 4b
â²c/âa² = [â²f(u,v)/â²u * 2a + â²f(u,v)/âuâv * 4b] * 2a + [â²f(u,v)/âvâu * 2a + â²f(u,v)/â²v * 4b] * 4b
â²c/âa² = â²f(u,v)/â²u * 4a² + â²f(u,v)/âuâv * 8ab + â²f(u,v)/âvâu * 8ab + â²f(u,v)/â²v * 16b²
â²c/âa² = â²f(u,v)/â²u * 4a² + â²f(u,v)/âuâv * 16ab + â²f(u,v)/â²v * 16b²
â²c/âa² = 4 * [â²f(u,v)/â²u * a² + â²f(u,v)/âuâv * 4ab + â²f(u,v)/â²v * 4b²]
â²c/âa² = 4 * [â/âu * a + â/âv * 2b]² f(u,v)