Problema di geometria: aiuto!?

Mi aiutereste a risolvere questo problema di geometria?

In un parallelogramma la somma delle misure della base e dell'altezza relativa è congruente al semiperimetro di un quadrato avente l'area di 3136 cm2. Sapendo che la base è 5/2 dell'altezza, calcola l'area del parallelogramma.

Potreste spiegarmelo in modo semplice? Grazie in anticipo.

Comments

  • calcoliamo il lato del quadrato

    radq(3136)=56

    quindi semiperimetro

    56*2=112

    sapendo che la base è 5/2 dell'altezza scriviamo h come altezza e b come base

    h+5/2h=112

    7/2h=112

    h=112/7*2=32

    b=32*5/2=80

    quindi area

    32*80=2560

  • ragioni prima sul quadrato:

    l'area è pari a 3136 cm^2 => lato * lato = 3136 cm^2 => lato = √3136 = 56 cm

    ora: il semiperimetro come dice la parola stessa è la metà del perimetro:

    => perimetro = 2p = 56 * 4 = 224 cm

    => semiperimetro = p = 2p / 2 = 224 / 2 = 112 cm

    passiamo al parallelogramma:

    la somma delle misure della base (b) e dell'altezza relativa (h) è congruente al semiperimetro del quadrato:

    => b + h = 112 cm

    ma sai anche che b = 5/2 * h

    => sostituisci al posto di b il termine (5/2 * h) in b + h = 112, ottenendo:

    b + h = 112 => (5/2 * h) + h = 112 da cui h = 32 cm (infatti: 5/2 * h + h = 112; 5/2 h + 2/2 * h = 112; 7/2 * h = 112 ; h = 112 * 2/7; h = 32)

    => b = 5/2 * h, al posto di h metti 32:

    => b = 5/2 * h => b = 5/2 * 32 => b = 80 cm

    l'area del parallelogramma (A) è pari al prodotto tra base (b) ed altezza (h):

    => A = b * h

    => A = 80 * 32 = 2560 cm^2

  • Ciao

    QUADRATO:

    A=(l)^2=3136

    l=rad(A)=rad(3136)=56

    p=(l*4)=(56*4)=224

    semiperim.=sp=(p/2)=(224:2)=112

    PARALLELOGRAMMA:

    (b+h)=sp=112

    b=5/2(h)

    (5+2)=7

    b=[(112:7)*5]=80

    h=[(112:7)*2]=32

    A=(b*h)=(80*32)=2560

Sign In or Register to comment.