Pre-Calculus pls explain how to do!!?

Find the values of b such that the function has the given maximum value.

f(x) = −x^2 + bx − 12; Maximum value: 109

b=___(smaller value)

b=___(larger value)

Comments

  • f(x) = -x² + bx − 12

    f′(x) = -2x + b

    f(x) will be at maximum when f′(x) = 0

    -2x + b = 0

    ∴ b = 2x

    and will have the same values for x and b at -x² + bx − 12 = 109

    ∴ -x² + (2x)x − 12 = 109

    ∴ -x² + 2x² − 12 = 109

    ∴ x² − 12 = 109

    ∴ x² = 121

    ∴ x = ±11

    when x = -11 then b = 2*-11 = -22 and when x = 11 then b = 22

    f(x) = -x² + 22x − 12 then f(11) = 109

    and

    f(x) = -x² − 22x − 12 then f(-11) = 109

    so smaller b = -22

    larger b = 22

  • f(x) = -x^2 + bx - 12

    Note that the vertex form of a parabola is y = a(x - h)^2 + k, therefore from completing the square:

    f(x) = -(x^2 - bx + 12)

    f(x) = -((x - b/2)^2 + 12 - (b^2)/4)

    k = (b^2)/4 - 12 = 109

    b^2/4 = 121

    b^2 = 121*4

    b = +/- sqrt(121*4)

    = +/- 11*2

    = -22 (smaller value)

    = +22 (larger value)

Sign In or Register to comment.