Please help!
cos(x+y)*cos(x-y)
= (1/2)[cos(2x) + cos(2y)]
= (1/2)[2cos^2x - 1 + 1 - 2sin^2y]
= cos^2x - sin^2y
----------
Ideas: 2cosAcosB = cos(A+B) + cos(A-B)
cos(x+y)*cos(x-y)=cos^2x - sin^2y
[cosxcosy - sinxsiny]*[cosxcosy + sinxsiny]
(cosxcosy)^2 - (sinxsiny)^2
cos^2xcos^2y - sin^2xsin^2y
cos^2x(1-sin^2y) - (1-cos^2x)sin^2y
cos^2x-cos^2xsin^2y-sin^2y+cos^2xsin^2y
cos^2x-sin^2y => proven
Comments
cos(x+y)*cos(x-y)
= (1/2)[cos(2x) + cos(2y)]
= (1/2)[2cos^2x - 1 + 1 - 2sin^2y]
= cos^2x - sin^2y
----------
Ideas: 2cosAcosB = cos(A+B) + cos(A-B)
cos(x+y)*cos(x-y)=cos^2x - sin^2y
[cosxcosy - sinxsiny]*[cosxcosy + sinxsiny]
(cosxcosy)^2 - (sinxsiny)^2
cos^2xcos^2y - sin^2xsin^2y
cos^2x(1-sin^2y) - (1-cos^2x)sin^2y
cos^2x-cos^2xsin^2y-sin^2y+cos^2xsin^2y
cos^2x-sin^2y => proven