what is the deivative of y=10x^5e^xsin x
only use product rule
(uvw)' = u'vw + uv'w + uvw'
y = 10(x^5)(e^x)sin(x)
u = 10x^5, u' = 50x^4
v = e^x, v' = e^x
w = sin(x), w' = cos(x)
dy/dx=50(x^4)(e^x)sin(x) +10(x^5)(e^x)sin(x) +10(x^5)(e^x)cos(x)
dy/dx = 10(x^4)(e^x)[5sin(x) + x.sin(x) + x.cos(x)]
product rule with the chain rule
y = 10(x^5) e^(xsinx)
let u = x^5 : du = 5x^4
v = e^(x sinx) : dv = e^(x sinx)*(x cosx + sinx )
d(uv) = udv + vdu
d[10(x^5) e^(xsinx)] =
10 x^5*(x cosx + sinx)*e^(x sinx) + 50 x^4* e^(x sinx)
Comments
(uvw)' = u'vw + uv'w + uvw'
y = 10(x^5)(e^x)sin(x)
u = 10x^5, u' = 50x^4
v = e^x, v' = e^x
w = sin(x), w' = cos(x)
dy/dx=50(x^4)(e^x)sin(x) +10(x^5)(e^x)sin(x) +10(x^5)(e^x)cos(x)
dy/dx = 10(x^4)(e^x)[5sin(x) + x.sin(x) + x.cos(x)]
product rule with the chain rule
y = 10(x^5) e^(xsinx)
let u = x^5 : du = 5x^4
v = e^(x sinx) : dv = e^(x sinx)*(x cosx + sinx )
d(uv) = udv + vdu
d[10(x^5) e^(xsinx)] =
10 x^5*(x cosx + sinx)*e^(x sinx) + 50 x^4* e^(x sinx)